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Abstract

An inverse thermal problem was considered for two-phase laminar flow in a parallel plate duct. The inlet temperature, which varies
temporally as well as spatially, was estimated when measured temperatures were available at downstream of the duct. In the present
study, the problem is solved through a minimization of an objective function by using two regularization methods, i.e., the iterative con-
jugate gradient method (CGM) and the Tikhonov regularization method (TRM). The effects of the functional form of inlet temperature
profile, the number of the measurement points and the measurement errors are investigated and discussed. The computational accuracy
and efficiency of these two regularization method are compared and discussed.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Inverse convection problem; Two-phase; Conjugate gradient method; Tikhonov regularization method
1. Introduction

The inverse heat transfer problems have numerous
applications in various branches of science and engineer-
ing, but the inverse problem cannot be directly solved
due to their ill-posed nature. The ill-posed nature renders
many algorithms used for direct problems inapplicable to
inverse problems, so that special numerical techniques
must be employed to stabilize the results. Among others,
commonly used technique is the regularization method.
There are two kinds of regularization method, the conju-
gate gradient method (CGM) and the Tikhonov regulariza-
tion method (TRM). The CGM solves the inverse problem
in iterative manner. It requires a solution of the direct
problem, the sensitivity problem and the adjoint problem
[1]. On the other hand, the TRM is a procedure which
modifies the objective function by adding smoothing fac-
tors that reduce the influence of measurement errors [2].
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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Whereas the inverse conduction problem can be found
quite often in the literatures or books, but the inverse con-
vection problem is relatively less. Huang and Özisik [3]
solved the inverse convection problem to estimate the wall
heat flux in laminar and forced convection flow from the
temperature measurement in the domain. They solved it
using CGM with adjoint problem and sensitivity problem
while neglecting the axial conduction. For the same condi-
tion, Liu and Özisik [4] considered the inverse convection
problem to estimate the spatially varying inlet temperature
profile in the laminar duct flow. The temporally varying
inlet temperature profile was predicted from the tempera-
ture measurement by Bokar and Özisik [5]. In 1996, Liu
and Özisik [6] extended the inverse convection problem
to the turbulent forced convection problem. The problem
of a timewise and spacewise variation of the wall heat flux
was unraveled by Machado and Orlande [7] in a parallel
plate channel.

Until now, many inverse heat convection problems
including the above mentioned literatures have been related
to the one-phase flow. In this study, however, two-phase
laminar flow is considered so that the gas temperature is
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Nomenclature

Ap particle�s surface area, m2

c specific heat, J/(kg K)
dp particle�s diameter, m
dk direction of descent at kth iteration, Eq. (13)
fp particle�s volume fraction
F inlet temperature distribution
h convective heat transfer coefficient
H height of duct
H0 regularization matrix, Eq. (23)
J the number of points which are to be determined
kg conductivity, W/(m K)
L duct length
M the number of sensors
Np number density of particle, m�3

Nu non-dimensional variable, Eq. (3j)
NuH non-dimensional variable, Eq. (3k)
Pe non-dimensional variable, Eqs. (3h) and (3i)
Re non-dimensional variable, Eq. (3g)
S objective function, Eq. (5)
T temperature, K
DT sensitivity function satisfying problem (6)
u velocity, m/s
Y measured temperature, K
Z sensitivity coefficient, Eq. (26)
Z sensitivity matrix, Eq. (25)

Greek symbols

bk search step size at kth iteration, Eq. (15)
d( ) Dirac delta function
e convergence criterion
c regularization parameter
ck conjugation coefficient at kth iteration, Eq. (14)
k, n Langrange multiplier satisfying problem (8)
H non-dimensional temperature
q density, kg/m3

r standard deviation
x random number

Superscripts

k number of iteration

* non-dimensional variable
0 guessed value

Subscripts
g gas
in inlet
j jth boundary point
m mth measurement point
out outlet
p particle
w wall
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in thermal non-equilibrium with the particle temperature.
Inlet temperature, which varies temporally as well as spa-
tially, is determined by using two regularization methods
mentioned above, given temperature measurements at
downstream in the domain.

2. Formulation

2.1. Conjugate gradient method

2.1.1. Direct problem

In this study two-phase laminar flow, which is composed
of air and stainless steel in a parallel plate duct, is consid-
ered as schematized in Fig. 1. Stainless steel particles are
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Fig. 1. Schematic of the problem.
assumed uniformly distributed with spherical shape.
Thermo-fluid dynamic properties of gas and particles are
assumed to be temperature-independent. No energy dissi-
pation due to viscosity is taken into account due to low
velocity. Initial gas and particle temperatures are T0 at
t = 0, while a temporal temperature variation of F(t,y) is
applied at inlet, x = 0 for t > 0. These two-phase tempera-
ture are then cooled by wall temperature Tw to reach the
equilibrium temperature Tw at far downstream.

A set of governing equations for gas and particle phases
are given by [8]

qgð1� fpÞcg
oT g

ot
þ u

oT g

ox

� �
¼ kg

o
2T g

ox2
þ o

2T g

oy2

� �
� hApNpðT g � T pÞ ð1aÞ

T gðt; 0; yÞ ¼ T in ¼ F ðt; yÞ ð1bÞ
T gðt; x; 0Þ ¼ T w ð1cÞ
T gðt; x;HÞ ¼ T w ð1dÞ
T gðt; L; yÞ ¼ T w ð1eÞ
T gðt ¼ 0; x; yÞ ¼ T 0 ð1fÞ

qpfpcp
oT p

ot
þ u

oT p

ox

� �
¼ �hApNpðT p � T gÞ ð1gÞ

T pðt; 0; yÞ ¼ T in ¼ F ðt; yÞ ð1hÞ
T pðt ¼ 0; x; yÞ ¼ T 0 ð1iÞ
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where the fully developed velocity [9] is represented by

u
umean

¼ 6
y
H

� y
H

� �2
� �

ð2Þ

By introducing the following non-dimensional variables:

t� ¼ t
H=umean

; x� ¼ x
H
; y� ¼ y

H
;

Hg ¼
T g � T w

Tmax � T w

; Hp ¼
T p � T w

Tmax � T w

; ð3a–eÞ

u� ¼ u
umean

¼ 6y�ð1� y�Þ; Re ¼ umeanH
t

;

Peg ¼ RePr ¼
umeanHqgcg

kg
; ð3f–hÞ

Pep ¼
umeanHqpcp

kg
; Nu ¼ hdp

kg
; NuH ¼ hdp

kg
� H
dp

¼ hH
kg

;

A�
p ¼

Ap

H 2
; N �

p ¼ NpH 3 ð3i–mÞ

The set of governing equations in non-dimensional vari-
ables are obtained as

Pegð1� fpÞ
oHg

ot�
þ u�

oHg

ox�

� �
¼ o2Hg

ox�2
þ o2Hg

oy�2

� �
� NuHA

�
pN

�
pðHg �HpÞ ð4aÞ

Hgðt�; 0; y�Þ ¼ Hin ð4bÞ
Hgðt�; x�; 0Þ ¼ Hw ð4cÞ
Hgðt�; x�; 1Þ ¼ Hw ð4dÞ

Hg t�;
L
H
; y�

� �
¼ Hw ð4eÞ

Hgðt� ¼ 0; x�; y�Þ ¼ H0 ð4fÞ

Pepfp
oHp

ot�
þ u�

oHp

ox�

� �
¼ �NuHA

�
pN

�
pðHp �HgÞ ð4gÞ

Hpðt�; 0; y�Þ ¼ Hin ð4hÞ
Hpðt� ¼ 0; x�; y�Þ ¼ H0 ð4iÞ

From now on, non-dimensional variables are expressed
without an asterisk and non-dimensional temperature Hg

and Hp will be expressed as Tg and Tp for convenience.
2.1.2. Inverse problem
For the inverse problem the inlet temperature profile

F(t,y) is regarded as unknown and is to be estimated by
using the temperature measurements of M sensors located
at appropriate locations (xm,ym), m = 1, . . . ,M inside the
duct. The CGM is applied to minimize the following
functional:

SðF ðt; yÞÞ ¼
Z t¼tf

t¼0

XM
m¼1

½Y mðt; x; yÞ � T gðt; xm; ym; F ðt; yÞÞ�
2 dt

ð5Þ
where, Ym and Tg are measured and estimated gas temper-
ature at the measurement locations. The estimated temper-
ature Tg is the solution of the direct problem by assuming
the inlet temperature profile F(t,y). Two auxiliary prob-
lems are also required for the successful implementation
of the CGM: the Sensitivity Problem and the Adjoint
Problem.

2.1.3. Sensitivity problem

To obtain the sensitivity problem, it is assumed in the di-
rect problem that when F(t,y) undergoes a small increment
DF(t,y), the temperature Tg and Tp change by DTg and
DTp. Therefore, by replacing F(t,y) by F(t,y) + DF(t,y),
Tg by Tg + DTg and Tp by Tp + DTp in the direct problem
(4) and then subtracting Eqs. (4) from it, the following sen-
sitivity problem is obtained:

Pegð1� fpÞ
oDT g

ot
þ u

oDT g

ox

� �
¼ o

2DT g

ox2
þ o

2DT g

oy2

� �
� NuHApnpðDT g � DT pÞ ð6aÞ

DT gðt; 0; yÞ ¼ DF ðt; yÞ ð6bÞ
DT gðt; x; 0Þ ¼ 0 ð6cÞ
DT gðt; x; 1Þ ¼ 0 ð6dÞ

DT g t;
L
H
; y

� �
¼ 0 ð6eÞ

DT gðt ¼ 0; x; yÞ ¼ 0 ð6fÞ

Pepfp
oDT p

ot
þ u

oDT p

ox

� �
¼ �NuHApnpðDT p � DT gÞ ð6gÞ

DT pðt; 0; yÞ ¼ DF ðyÞ ð6hÞ
DT pðt ¼ 0; x; yÞ ¼ 0 ð6iÞ
2.1.4. Adjoint problem and gradient equation

To derive the adjoint problem, Eqs. (4a) and (4g) are
multiplied by the Lagrange multipliers k(t,x,y) and
n(t,x,y). The resulting expression is integrated over the
time and space domain, and then added to the right-hand
side of Eq. (5) to yield

SðF ðt; yÞÞ ¼
Z t¼tf

t¼0

XM
m¼1

½Y mðt; x; yÞ � T gðt; xm; ym; F ðt; yÞÞ�
2 dt

þ
Z t¼tf

t¼0

Z L

x¼0

Z H

y¼0

kðx; yÞ �Pegð1� fpÞ
oT g

ot
þ u

oT g

ox

� ��
þ o2T g

ox2
þ o2T g

oy2

� �
� NuHApNpðT g � T pÞ

�
dxdy dt

þ
Z t¼tf

t¼0

Z L

x¼0

Z H

y¼0

nðx; yÞ �Pepfp
oT p

ot
þ u

oT p

ox

� ��
� NuHApNpðT p � T gÞ

�
dxdy dt ð7Þ

Next, the variation DS[F(t,y)) of Eq. (7) is obtained. After
some algebraic manipulations, the resulting expressions are
allowed to go to zero. From them, the following adjoint
problem is obtained for the determination of the Lagrange
multiplier k(t,x,y) and n(t,x,y)
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Pegð1� fpÞ
ok
ot

þ u
ok
ox

� �
þ o2k

ox2
þ o2k
oy2

� �
� NuHApN pðk� nÞ

þ
XM
m¼1

2½T g � Y �dðx� xmÞdðy � ymÞ ¼ 0

ð8aÞ
kðt; 0; yÞ ¼ 0 ð8bÞ
kðt; x; 0Þ ¼ 0 ð8cÞ
kðt; x; 1Þ ¼ 0 ð8dÞ

k t;
L
H
; y

� �
¼ 0 ð8eÞ

kðt ¼ tf ; x; yÞ ¼ 0 ð8fÞ

Pepfp
on
ot

þ u
on
ox

� �
� NuHApN pðn� kÞ ¼ 0 ð8gÞ

n t;
L
H
; y

� �
¼ 0 ð8hÞ

nðt ¼ tf ; x; yÞ ¼ 0 ð8iÞ

where d( ) is the Dirac delta function and the variation
DS[F(t,y)] is determined as

DS½F ðt; yÞ� ¼
Z t¼tf

t¼0

Z 1

y¼0

�
Pepfpunðt; 0; yÞ

þ okðt; 0; yÞ
ox

�
DF ðt; yÞdy dt ð9Þ

We note that DS[F(t,y)], by definition, is given by

DS½F ðt; yÞ� ¼
Z t¼tf

t¼0

Z 1

y¼0

rS½F ðt; yÞ�DF ðt; yÞdy dt ð10Þ

From comparison of Eq. (2.9) with (2.10), we conclude that

rS½F ðt; yÞ� ¼ Pepfpunðt; 0; yÞ þ
ok
ox

				
t;0;y

ð11Þ

This is the gradient equation that relates the gradient of
the functional S(F(t,y)) to the Lagrange multiplier
k(t,x,y) and n(t,x,y).

2.1.5. Iterative procedure

Assuming that the functions Tg, Tp, DTg, DTp, k(t,x,y),
n(t,x,y) and $S[F(t,y)] are available at the kth iteration,
the iterative procedure is performed as follows. The bound-
ary temperature at step k + 1 is computed from

F kþ1ðt; yÞ ¼ F kðt; yÞ � bkdkðt; yÞ ð12Þ
where dk is the direction of descent, determined from

dk ¼ rS½F kðt; yÞ� þ ckdk�1 ð13Þ
and the conjugation coefficient ck is obtained from the
Fletcher–Reeves expression [1] as

ck ¼
R t¼tf
t¼0

R y¼1

y¼0
rS½F kðt; yÞ�


 �2
dy dtR t¼tf

t¼0

R y¼1

y¼0 rS½F k�1ðt; yÞ�

 �2

dy dt
with c0 ¼ 0 ð14Þ
The search step size bk is obtained by minimizing the func-
tional given by Eq. (5) with respect to bk such that

bk ¼

R t¼tf
t¼0

PM
m¼1

½T gðt; xm; ym; F kðt; yÞÞ � Y m�DT gðt; xm; ym; dkÞdtR t¼tf
t¼0

PM
m¼1

½DT gðxm; ym; dkÞ�
2 dt

ð15Þ

where DTg(t,xm,ym; d
k) is the solution of the sensitivity

problem (6) which is obtained by setting DF(t,y) = dk.

2.1.6. Discrepancy principle for stopping criterion

If the problem contains no measurement error, the tra-
ditional check condition is specified as

SðF kþ1ðt; yÞÞ < e ð16Þ

where the value of the tolerance e is chosen so that suffi-
ciently stable solutions are obtained. However the observed
temperature data contains measurement errors. As the esti-
mated temperatures approach the measured temperatures
containing errors, a large oscillation may appear during
the minimization of the function (5) in the inverse solution,
resulting in an ill-posed nature character for the inverse
problem. However, the CGM may become well-posed if
the discrepancy principle is used to stop the iterative proce-
dure. When the residuals between measured and estimated
temperatures are of the same order of magnitude of r such
that

jY ðtmeasured; xmeasured; ymeasuredÞ
� T ðtmeasured; xmeasured; ymeasuredÞj � r ð17Þ

where r is the standard deviation of the measurements
which is assumed to be a constant, the following expression
is obtained for stopping criteria e by substituting Eq. (17)
into Eq. (5)

e ¼
XM
m¼1

Z t¼tf

t¼0

r2 dt ¼ Mtfr2 ð18Þ

Then the stopping criterion is given by Eq. (16) with e
determined from Eq. (18).

2.1.7. Computational procedure

Suppose an initial guess F0(t,y) is available for the func-
tion F(t,y). Set k = 0 and then

Step 1. Solve the direct problem in order to compute Tg

and Tp.
Step 2. Check the stopping criterion. Continue if not

satisfied.
Step 3. With Tg and measured temperature Ym, solve the

adjoint problem (8) and obtain variable k(t,x,y)
and n(t,x,y).

Step 4. With k(t,x,y) and n(t,x,y), compute the gradient
vector $S[Fk(t,y)] from Eq. (11).
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Step 5. With the gradient $S[Fk(t,y)], compute ck from Eq.
(14). Then compute the direction of descent dk from
Eq. (13).

Step 6. Set DFk = dk and solve the sensitivity problem (6)
to obtain DTg(t,x,y; d

k).
Step 7. With DTg(t,x,y; d

k), compute the search step size
bk from Eq. (15).

Step 8. With the search step size bk and the direction of the
descent dk, compute the new estimate Fk+1(t,y)
from Eq. (12). And return to Step 1.
2.2. Tikhonov regularization method

2.2.1. Direct problem
The direct problem would be the same as that for conju-

gate gradient method.

2.2.2. Inverse problem

The objective of this method is to minimize the follow-
ing functional

SðF ðt; yÞÞ ¼
Z t¼tf

t¼0

XM
m¼1

½Y mðt; x; yÞ � T gðt; xm; ym; F ðt; yÞÞ�
2 dt

ð19Þ
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Fig. 2. Two test cases. (a) Sinusoidal variation. (b) Stepwise variation.
Here, the objective function can be modified by adding the
following regularization term

ckFk2 ð20Þ
where c is called the regularization parameter. It is deter-
mined by using L-curve method [10,11]. The L-curve meth-
od is sketched in the following:

Define the following curve

L ¼ fð/kFk2Þ;/ðSðF ðt; yÞÞÞ : c > 0g ð21Þ
The curve is known as L-curve and a suitable regulariza-
tion parameter c corresponds to a regularized solution near
the �corner� of the L-curve.

Regularization term must be discretized and added to
the objective function, yielding

SðF ðt; yÞÞ ¼ ðY� TgÞTðY� TgÞ þ cðH0FÞTðH0FÞ ð22Þ
The square matrix H0 is referred to as a regularization
matrix.

H0 ¼ I ðI : J � J indentity matrixÞ ð23Þ
The boundary temperature can be found by minimizing
S(F(t,y)) which can be accomplished by matrix differentia-
tion with respect to the unknowns, yielding
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fZTZþ cHT
0H0gF ¼ ZTðY� T0

gÞ þ ZTZF0 ð24Þ

where Z is the sensitivity matrix which is expressed by fol-
lowing expression.

Z ¼

ðZgÞ11 . . . ðZgÞj1 . . . ðZgÞJ1
. . . . . . . . . . . . . . .

ðZgÞ1m . . . ðZgÞjm . . . ðZgÞJm
. . . . . . . . . . . . . . .

ðZgÞ1M . . . ðZgÞjM . . . ðZgÞJM

266666664

377777775 ð25Þ
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2.2.3. Sensitivity coefficient

Sensitivity matrix is composed of sensitivity coefficients.
Each sensitivity coefficient is defined by

ðZgÞjm ¼ oðT gÞm
oF j

; ðZpÞjm ¼ oðT pÞm
oF j

j ¼ 1–J ; m ¼ 1–M

ð26Þ

where j refers to the boundary point associated with the
unknown inlet temperature, whereas m refers to interior
location of measurement point.
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Fig. 4. Results obtained by conjugate gradient method for r = 0.0 K.
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The equation set of them can be obtained by differenti-
ation of the direct problem (4) with respect to the unknown
boundary temperature F(t,y), which gives
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Pegð1� fpÞ
oðZgÞj

ot
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oðZgÞj

ox

� �
¼ o

2ðZgÞj

ox2
þ o

2ðZgÞj

oy2

� �
� NuHApnpððZgÞj � ðZpÞjÞ ð27aÞ

ðZgÞjðt; 0; yÞ ¼
1; if y belongs to position of j

0; otherwise

(
ð27bÞ

ðZgÞjðt; x; 0Þ ¼ 0 ð27cÞ

ðZgÞjðt; x; 1Þ ¼ 0 ð27dÞ

ðZgÞj t;
L
H
; y

� �
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ðZgÞjðt ¼ 0; x; yÞ ¼ 0 ð27fÞ

Pepfp
oðZpÞj

ot
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oðZpÞj

ox

� �
¼ �NuHApnpððZpÞj � ðZgÞjÞ

ð27gÞ

ðZpÞjðt; 0; yÞ ¼
1; if y belongs to position of j

0; otherwise

(
ð27hÞ

ðZpÞjðt ¼ 0; x; yÞ ¼ 0 ð27iÞ
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Fig. 7. Results obtained by conjugate gradient method for r = 0.0 K.
Number of measurement points = 5 (a) and 11 (b).
2.2.4. Computational procedure

Step 1. Calculate sensitivity coefficient from Eqs. (27) and
construct sensitivity matrix Z.

Step 2. Assume the initial value for the regularization
parameter c.

Step 3. Set F0(t,y) = 0 as an initial value.
Step 4. Calculate Tg from Eqs. (4).
Step 5. With sensitivity matrix Z and estimated tempera-

ture Tg at measuring points, calculate F(t,y) from
Eq. (24) for various values of regularization para-
meter c.

Step 6. Determine the complete temperature distribution
from Eqs. (4).

3. Results and discussion

The computational accuracy and efficiency of the pres-
ent inverse analysis is examined in estimating the unknown
inlet temperature profile. Two test cases have been consid-
ered with simulated measurements Ymeasured which includes
some artificial measurement errors. The estimated inlet
temperature is then compared with the exact one without
any measurement error. The channel length is taken long
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Fig. 8. Results obtained by Tikhonov regularization method for
r = 0.0 K. Number of measurement points = 5 (c = 2.16 · 10�2) (a) and
11 (c = 1.296 · 10�2) (b).
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enough to cover the thermally developing region such that
L is 50 m and H is 0.2 m. And the sensors are placed at the
downstream location, x = 0.2 m from the inlet. The air
properties are qg = 0.4975 kg/m3, cg = 1075 J/kg K and
jg = 0.0524 W/m K. The properties of stainless steel parti-
cle used here are qp = 8238 kg/m3, cp = 563 J/kg K and
jp = 19.8 W/m K. And the diameter of particle is dp =
100 lm with volume fraction, fp = 5.23 · 10�7. The mean
flow velocity, umean, is 0.1 m/s [8]. The heat transfer coeffi-
cient h is assumed to be 2.0 W/m2 K.

The simulated measured temperature data, Ymeasured, are
generated by adding some random errors to the computed
exact temperatures as follows:

Y measured ¼ T exact þ xr ð28Þ

where r is the selected standard deviation which takes val-
ues of 4.0 K and 8.0 K, and x is a random number between
�2.576 6 x 6 2.576 which represents 99% confidence
bound for the measured temperature.

Two types of equations for F(t,y) are selected for the
test cases as shown in Fig. 2:
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Fig. 9. Effect of measurement position using conjugate gradient method
with M = 11. (a) Test case (1). (b) Test case (2).
ð1Þ F ðt; yÞ ¼ 1:071 sinðpyÞ � sin p
t
tf

� �
ð29aÞ

ð2Þ
F ðt; yÞ ¼ 9=7 ð0:3 < y < 0:7; 8 < t < 17Þ
F ðt; yÞ ¼ 0 ðelsewhereÞ

ð29bÞ

Here, y and t is non-dimensional variables. The test case (1)
has sinusoidal variation, while the test case (2) has stepwise
variation of the inlet temperature profile.

Fig. 3 shows the two-phase temperature variation along
the centerline of the channel up to 1 m from the inlet when
the time is equal to 12.5. Since the gas is cooled by the wall
first and then the particle is cooled by the gas, the particle
temperature is observed to be higher than that of gas. If the
particle�s volume fraction decreases, the temperature differ-
ence would further increase.

In order to estimate the effect of number of measure-
ment points on the accuracy, an idealized situation, in
which there is no measurement error, i.e., r = 0.0 K, is con-
sidered. Figs. 4 and 5 show the estimated inlet temperature
F(t,y) for the test case (1) when CGM and TRM are,
respectively, employed. The numbers of measurement
points used are 5 and 11. When TRM is applied to the
inverse problem, the regularization parameter has to be
determined. Fig. 6 shows the L-curve and regularization
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Fig. 10. Effect of measurement position using Tikhonov regularization
method with M = 11. (a) Test case (1). (b) Test case (2).
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parameter, c = 1.008 · 10�3, for the test case (1) when the
number of measurement points is 11. In this figure, the reg-
ularization parameter corresponds to the corner of the L-
curve. When the number of measurement points is 5, the
regularization parameter becomes 1.68 · 10�3 which is
higher than previous one. This higher regularization value
represents that more regularization is required to control
the ill-posed characteristics. It is taken for granted that
the estimated inlet temperature is more accurate when the
number of measurement points is 11. Temporal as well as
spatial variation of temperature is shown to be well pre-
dicted by both CGM and TRM, since no measurement
error is involved.

Figs. 7 and 8 illustrate the estimated inlet temperature
for the test case (2). These figures also show that both
CGM and TRM yield better results when the number of
measurement point is 11. But some wiggling behavior is ob-
served in the results due to its inherent discontinuity in the
step function. Based on this fact, discontinuous function
estimation is considered more difficult to inversely analyze.

In order to find the effect of measurement position, more
results obtained by CGM and TRM are plotted in Figs. 9
and 10 for various measurement positions. These results
are obtained for the case which has 11 measurement points
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Fig. 11. Effect of measurement error using conjugate gradient method
with M = 11. Standard deviation of measurement error = 4.0 K (a) and
8.0 K (b).
and no measurement error. Figs. 9 and 10 show the esti-
mated inlet temperature distribution along the height of
the duct. Here, Dx denotes the downstream measurement
position from the duct inlet. According to Fig. 9, it can
be found that the CGM�s results are less accurate when
the measurement position is shifted toward the inlet.
CGM uses the gradient information to find the inlet tem-
perature. Since the hot flow starts to cool fast from the
inlet, its gradient is large therein, it becomes harder to
accurately estimate inlet temperature. However, for the test
case (2) with step variation in temperature, it can be found
that when the measurement position is located far from the
inlet, there is more oscillation in solution near the discon-
tinuity. The results for TRM show that the estimated inlet
temperature becomes more accurate when the measure-
ment position is near the inlet. This is because TRM uses
the sensitivity coefficients which are larger near the inlet.

Now, the case with measurement error is to be consid-
ered. The results with measurement error r = 4.0 and
8.0 K are plotted in Figs. 11–14 for the number of measure-
ment points of 11. Fig. 11(a) and (b) show the results
obtained by using the CGM for the test case (1) with the
measurement error r = 4.0 K and r = 8.0 K, while
Fig. 12(a) and (b) represent the results by TRM for the
same test case with measurement error r = 4.0 K and
r = 8.0 K. Figs. 13 and 14 are the results for the test case
(2) when CGM and TRM is employed. According to the
figures, it can be found that the results for two test cases
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Fig. 12. Effect of measurement error using Tikhonov regularization
method with M = 11. Standard deviation of measurement error = 4.0 K
(c = 7.776 · 10�3) (a) and 8.0 K (c = 1.296 · 10�2) (b).
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method with M = 11. Standard deviation of measurement error = 4.0 K
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Table 1
Comparison of average error (%)

Method/r Case (1) Case (2)

CGM/4.0 K 0.82 7.03
CGM/8.0 K 1.13 7.94
TRM/4.0 K 6.54 8.14
TRM/8.0 K 7.40 8.53

Table 2
Comparison of computing time (s)

Method/r Case (1) Case (2)

CGM/4.0 K 3446 15,835
CGM/8.0 K 2172 13,384
TRM/4.0 K 12,787 12,770
TRM/8.0 K 12,790 12,785
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with the measurement error r = 4.0 K are better than those
for the cases with measurement error r = 8.0 K. It is also
noted that TRM produces poorer results than the iterative
method, CGM as observed from the wiggling behavior in
the figures. The results in temporal as well as spatial varia-
tion of temperature for the test case (2), which are attained
by TRM for r = 8.0 K, are the worst, but they still show
stepwise variation.

To compare two regularization methods more precisely,
the accuracy and computational time of CGM and TRM
are listed in Tables 1 and 2 for two cases for which there
are measurement errors involved.

The average error for the inlet temperature profile in
Table 1 is defined as [12]

Average error ð%Þ

¼
Xt¼tf

t¼1

XJ

j¼1

F ðt; yÞ � bF ðt; yÞ
F ðt; yÞ

					
					

" #,
ðJ � tf Þ � 100% ð30Þ

where F(t,y) and bF ðt; yÞ denote the exact and estimated
values of inlet temperature and J denotes the total number
of boundary points which have to be determined.
When CGM is used, the average error for the test case
(1) is 0.82% and 1.13%, respectively, for r = 4.0 and
r = 8.0 K. But when TRM is employed, the average error
is increased to 6.54% and 7.40% for the same test case.
For the test case (2), the average error of CGM is 7.03%
and 7.94%, while that of TRM is 8.14% and 8.53%. Based
on these results, the accuracy of CGM is observed to be
better than that of TRM.

The computational time is also calculated and compared
for each case in Table 2. The computer used for calculation
is equipped with a CPU of Pentium 4 1.5 GHz. For the
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case of CGM, it takes longer time when the measurement
error is small. For example, the computing time for test
case (1) and case (2) is 3446 and 15,835 s for the measure-
ment error r = 4.0 K. However, for r = 8.0 K, it becomes
2172 and 13,384 s for the same test cases. This is because
the stopping criterion e becomes smaller for smaller mea-
surement error due to discrepancy principle. Also, the com-
puting time for test case (2) is longer than that for test case
(1). Actually, it takes three iterations for measurement
error of 4.0 K and two iterations for measurement error
of 8.0 K to get convergent solutions. But for the test case
(2), it takes 12 iterations and 10 iterations, respectively,
for r = 4.0 and r = 8.0 K. From these results, it can be
found that CGM needs more iterations and computing
time when the unknown distribution has discontinuity.
For the case of TRM, it takes almost the same computing
time, i.e., about 12,785 s, for all the cases. This is because
TRM spends most of computing time to calculate the sen-
sitivity coefficients which are common for all the cases.
Based on these, if the unknown temperature distribution
has no discontinuity, usually CGM takes a shorter comput-
ing time than TRM, since the conjugate gradient method
with adjoint problem does not need to calculate the sen-
sitivity coefficient. But, if there is a discontinuity in the
unknown temperature distribution, the CGM takes much
computing time than the TRM which does not need to iter-
ate, because CGM needs more iterations for convergence.

4. Conclusions

In this study, two regularization methods, the conjugate
gradient method and the Tikhonov regularization method
are used to solve the inverse heat transfer problem for
determining the unknown inlet temperature in two-phase
laminar flow, when measured temperature is available at
downstream of the channel.

The conjugate gradient method with the adjoint prob-
lem, which is one of iterative regularization methods, was
found to provide a more accurate solution than the Tikho-
nov regularization method. But the computing time of
CGM strongly depends on the functional form of un-
knowns, because this inverse method usually needs some
iterations to solve the inverse problem. On the other hand,
the Tikhonov regularization method requires almost the
same computing time regardless of the functional form of
unknowns because in this problem it does not need itera-
tions to solve the inverse problem. Instead, this method
necessitates a calculation of sensitivity coefficients which
requires a long computational time.

It was also found that these regularization methods,
both CGM and TRM, have more difficulties in calculation,
when the unknown temperature profile has a discontinuity
in distribution, thereby inevitably introducing more inaccu-
racy in the solution.
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